Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.122
1.
BMC Microbiol ; 24(1): 162, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730339

BACKGROUND: Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS: The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION: Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.


Bacteria , Bays , Microbiota , Phylogeny , RNA, Ribosomal, 16S , Seawater , Supervised Machine Learning , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Microbiota/genetics , Seawater/microbiology , India , Bays/microbiology , Biodiversity , DNA, Bacterial/genetics , Salinity , Sequence Analysis, DNA/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731824

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Agar , Rhodophyta , Rhodophyta/genetics , Rhodophyta/metabolism , Rhodophyta/growth & development , Salinity , Gene Expression Regulation, Plant , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Temperature , Nitrogen/metabolism
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731994

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Ethylenes , Gene Expression Regulation, Plant , Salt Stress , Salt-Tolerant Plants , Ethylenes/biosynthesis , Ethylenes/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Mesembryanthemum/metabolism , Mesembryanthemum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Biosynthetic Pathways , Gene Expression Profiling/methods , Abscisic Acid/metabolism , Salinity , Transcriptome
4.
Food Res Int ; 186: 114375, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729732

The proximal composition and its seasonal variation of the green seaweed Ulva sp. harvested in a traditional saline (earthen ponds used for marine salt extraction) from Cadiz Bay (Southern Spain) was evaluated. Ulva sp. was also collected in a reference location within the Bay in order to compare and evaluate the effects of the particular characteristics of the saline in the composition of the macroalgae. Moisture, protein, lipid, ash, carbohydrate, fiber and macro- (Na, K, Ca, Mg), micro-mineral contents (Fe, Zn, Cu) and heavy metals (As, Cd, Co, Cr, Hg, Ni, Pb, Sn) of harvested biomass samples as well as environmental parameters of seawater (temperature, salinity, pH, DO, NH4+, NO3-, NO2- and PO43-) were measured. The results showed that Ulva sp. from the earthen ponds in the traditional salina was a better source of proteins, lipids, K and Mg, highlighting in summer with values of 27.54 % versus 6.11 %; 6.71 % versus 3.26 %; 26.60 mg g-1 versus 14.21 mg g-1 and 23.13 mg g-1 versus 17.79 mg g-1, respectively. It also had Na/K and Ca/Mg ratios of less than one, suggesting a healthy food source. Considering the Commission Recommendation (EU) 2018/464 as a working reference, Ulva sp. did not exceed the limit of toxic metals for human consumption.A season and site-season significant interaction on the composition of the seaweeds was observed. The proximal and mineral composition of Ulva sp. was influenced by the special features and environmental conditions of the earthen ponds. Hence, significant differences were observed in the macroalgae collected in the earthen ponds in summer and autumn, in contrast to the winter and spring samples, whose characteristics were similar to those from the inner bay. The closure of the lock-gates in summer to favor the production of salt significantly modified the environmental characteristics of the saline, affecting the physiological capacity of Ulva sp. to assimilate and storage nutrients, and therefore its tissue composition. As a consequence, the highest contents of lipid, ash, Ca, K, Mg and Fe were estimated in the macroalgae.


Metals, Heavy , Minerals , Nutritive Value , Seawater , Ulva , Ulva/chemistry , Minerals/analysis , Metals, Heavy/analysis , Seawater/chemistry , Humans , Spain , Seasons , Seaweed/chemistry , Lactuca/chemistry , Salinity
5.
Environ Monit Assess ; 196(6): 501, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698138

Brackish waters and estuaries at the lower reaches of rivers accumulate organic matter and nutrients from various sources in the watershed. Sufficient light and shallow water depth stimulate phytoplankton growth, resulting in a more diversified ecosystem with higher trophic levels. For effective watershed management, it is crucial to characterize the water quality of all rivers, including small and medium-sized ones. Our field survey assessed water quality parameters in 26 inflow rivers surrounding Lakes Shinji and Nakaumi, two consolidated brackish lakes in Japan. The parameters included water temperature, salinity, chlorophyll-a, and nutrients. The study used hierarchical clustering. The Silhouette Index was used to assess clustering outcomes and identify any difficulties in dispersion across clusters. The 26 rivers surrounding Lakes Shinji and Nakaumi were classified into six groups based on their water quality characteristics. This classification distinguishes itself from earlier subjective methods that relied on geographical factors. The new approach identifies a need for improved management of river water quality. The results of the cluster analysis provide valuable insights for future management initiatives. It is important to consider these findings alongside established watershed criteria.


Environmental Monitoring , Lakes , Rivers , Water Quality , Lakes/chemistry , Environmental Monitoring/methods , Rivers/chemistry , Cluster Analysis , Japan , Water Pollutants, Chemical/analysis , Salinity , Chlorophyll A/analysis , Saline Waters , Chlorophyll/analysis , Phytoplankton/classification , Phytoplankton/growth & development
6.
Braz J Biol ; 84: e276161, 2024.
Article En | MEDLINE | ID: mdl-38747857

The objective was to evaluate the behavior of melon genotypes (Cucumis melo L.) in the physical, chemical and biochemical quality of melon fruits as a function of electrical conductivity irrigation water levels (ECw). The experimental design adopted was randomized blocks in a 5 x 3 factorial scheme with five replications. The first factor was represented by five salinity levels (0.5, 1.5, 3.0, 4.5, and 6.0 dS m-1) and the second factor by accessions A35, and A24, and the hybrid Sancho. The physical, chemical and biochemical variables showed a reduction in production, with smaller fruits, with less weight, smaller cavity, with increased pulp thickness for Sancho. Vitamin C and yellow flavonoids increased indicating antioxidant power against ROS. The genotypes showed similar post-harvest behavior, however, the hybrid Sancho stood out over the others, possibly because it is an improved material. Accession A24 presented physiological and biochemical responses that classify it as intolerant.


Fruit , Salinity , Fruit/chemistry , Genotype , Cucumis melo/physiology , Cucumis melo/classification , Agricultural Irrigation , Cucurbitaceae/classification , Cucurbitaceae/physiology , Cucurbitaceae/genetics , Antioxidants/analysis
7.
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38743050

Natural products from Actinomycetota have served as inspiration for many clinically relevant therapeutics. Despite early triumphs in natural product discovery, the rate of unearthing new compounds has decreased, necessitating inventive approaches. One promising strategy is to explore environments where survival is challenging. These harsh environments are hypothesized to lead to bacteria developing chemical adaptations (e.g. natural products) to enable their survival. This investigation focuses on ore-forming environments, particularly fluoride mines, which typically have extreme pH, salinity and nutrient scarcity. Herein, we have utilized metagenomics, metabolomics and evolutionary genome mining to dissect the biodiversity and metabolism in these harsh environments. This work has unveiled the promising biosynthetic potential of these bacteria and has demonstrated their ability to produce bioactive secondary metabolites. This research constitutes a pioneering endeavour in bioprospection within fluoride mining regions, providing insights into uncharted microbial ecosystems and their previously unexplored natural products.


Actinobacteria , Actinobacteria/genetics , Actinobacteria/metabolism , Metagenomics , Fluorides/metabolism , Biological Products/metabolism , Bioprospecting , Metabolomics , Biodiversity , Genome, Bacterial , Phylogeny , Hydrogen-Ion Concentration , Salinity
8.
Sci Rep ; 14(1): 10981, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745099

Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.


Gene Expression Profiling , Gene Expression Regulation, Plant , Salt Stress , Salt Tolerance , Salt Tolerance/genetics , Gene Expression Regulation, Plant/drug effects , Salt Stress/genetics , Transcriptome , Salinity , Gene Ontology , Plant Proteins/genetics , Plant Proteins/metabolism
9.
Sci Rep ; 14(1): 10870, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740776

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Charcoal , Pisum sativum , Soil , Pisum sativum/drug effects , Pisum sativum/growth & development , Pisum sativum/metabolism , Soil/chemistry , Photosynthesis/drug effects , Salt Stress/drug effects , Salinity , Chlorophyll/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism
10.
PeerJ ; 12: e17286, 2024.
Article En | MEDLINE | ID: mdl-38708356

Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.


Stress, Physiological , Stress, Physiological/drug effects , Droughts , Plant Development/drug effects , Bacteria/metabolism , Bacteria/drug effects , Salinity , Plants/metabolism , Plants/drug effects
11.
BMC Genomics ; 25(1): 446, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714962

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Brain , Gene Regulatory Networks , Inflammation , MicroRNAs , Oxidative Stress , RNA, Messenger , Salinity , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brain/metabolism , Animals , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling , Air , Transcriptome
12.
Harmful Algae ; 134: 102627, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705620

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Fresh Water , Microbiota , Fresh Water/microbiology , Microcystis/physiology , Cyanobacteria/physiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Salinity , Microcystins/metabolism , Harmful Algal Bloom , Seawater/microbiology , Seawater/chemistry , France
13.
Water Environ Res ; 96(5): e11028, 2024 May.
Article En | MEDLINE | ID: mdl-38715392

Reverse osmosis (RO) effectively provides clean drinking water. Different RO membrane types are tailored to treat saline water feeds with varying characteristics. In the context of low brackish water feeds, the objective is to remove only a minimal excess of salinity through the membrane. Our study introduces a method of membrane post-treatments capable of achieving controlled salt rejection while concurrently enhancing permeate flux, which is vital for achieving effective and energy-efficient desalination of low brackish water. The post-treatments were conducted on our in-house-developed membranes using aqueous solutions of N,N-Dimethylformamide and glycerol for different drying times at the coupon level. The process was scaled up at the module level, allowing us to assess its potential for commercial application. At the coupon level, the permeate flux increased significantly from 3.7 ± 0.9 to 10.6 ± 0.2 L/m2·h·bar, while the salt rejection decreased from 95.6 ± 1% to 70.5 ± 1% when measured with a feed of 2,000 ppm NaCl concentration. At the module level, we observed a higher flux of 12.8 L/m2·h·bar, alongside a salt rejection of 55.5% with a similar feed. Varying post-treatment parameters at the coupon level allowed us to attain the desired salt rejection and permeate flux values. Physical changes in both pristine and post-treated membranes, including polymer swelling, were observed without chemical alterations, enhancing our understanding of the post-treatment effect and its potential for broader commercial use. PRACTITIONER POINTS: Post-treatment of RO membranes enhances flux. Physical structuring through polymer swelling was observed with the chemical structure unaltered. Post-treatment of RO opens doors for broader energy-efficient desalination application.


Membranes, Artificial , Osmosis , Saline Waters , Salinity , Water Purification , Water Purification/methods , Saline Waters/chemistry
14.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Article En | MEDLINE | ID: mdl-38706002

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Ascorbic Acid , Glutathione , Glycine max , Seedlings , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Glycine max/drug effects , Glycine max/metabolism , Glycine max/physiology , Ascorbic Acid/metabolism , Glutathione/metabolism , Minerals/metabolism , Salt Tolerance/drug effects , Salt Stress/drug effects , Chlorophyll/metabolism , Salinity
15.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704527

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Archaea , Lakes , Salinity , Lakes/microbiology , Lakes/chemistry , Archaea/genetics , Archaea/classification , Archaea/metabolism , Tibet , High-Throughput Nucleotide Sequencing , Phylogeny , Biodiversity , Ecosystem , RNA, Ribosomal, 16S/genetics , Nitrogen/metabolism , Nitrogen/analysis , DNA, Archaeal/genetics
16.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732273

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Droughts , Melatonin , Plant Roots , Salinity , Seedlings , Seeds , Triticum , Melatonin/pharmacology , Triticum/drug effects , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Triticum/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Seeds/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/drug effects , Gene Expression Regulation, Plant/drug effects , Salt Stress , Sodium Chloride/pharmacology , Antioxidants/metabolism , Water/metabolism
17.
Sci Data ; 11(1): 477, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724643

Gossypium purpurascens is a member of the Malvaceae family, holds immense economic significance as a fiber crop worldwide. Abiotic stresses harm cotton crops, reduce yields, and cause economic losses. Generating high-quality reference genomes and large-scale transcriptomic datasets across diverse conditions can offer valuable insights into identifying preferred agronomic traits for crop breeding. The present research used leaf tissues to conduct PacBio Iso-seq and RNA-seq analysis. We carried out an in-depth analysis of DEGs using both correlations with cluster analysis and principal component analysis. Additionally, the study also involved the identification of both lncRNAs and CDS. We have prepared RNA-seq libraries from 75 RNA samples to study the effects of drought, salinity, alkali, and saline-alkali stress, as well as control conditions. A total of 454.06 Gigabytes of transcriptome data were effectively validated through the identification of differentially expressed genes and KEGG and GO analysis. Overwhelmingly, gene expression profiles and full-length transcripts from cotton tissues will aid in understanding the genetic mechanism of abiotic stress tolerance in G. purpurascens.


Gossypium , RNA-Seq , Stress, Physiological , Transcriptome , Gossypium/genetics , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant , Salinity , RNA, Plant/genetics , Plant Leaves/genetics
18.
Bioresour Technol ; 401: 130688, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604298

Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.


Bioreactors , Denitrification , Nitrates , Salinity , Wastewater , Wastewater/chemistry , Nitrates/metabolism , Water Purification/methods , Electricity , Pseudomonas/metabolism
19.
Bioresour Technol ; 401: 130727, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643952

Understanding the different biological responses to salinity gradient between coexisting biofilm and flocs is crucial for regulating the ecological function of biofilm system. This study investigated performance, dynamics, and community assembly of biofilm system under 3 %-7% salinity gradient. The removal efficiency of NH4+-N remained stable and exceeded 93 % at 3 %-6% salinity, but decreased to below 80 % at 7 % salinity. The elevated salinity promoted the synthesis of extracellular polymer substrates, inhibited microbial respiration, and significantly regulated the microbial community structure. Compared to flocs, biofilm exhibited greater species diversity and richer Nitrosomonas. It was found diffusion limitations dominated the microbial community assembly under the salinity gradient. And microbial network revealed positive interactions predominated the microbial relationships, designating norank Spirochaetaceae, unclassified Micrococcales, Corynebacterium, and Pusillimonas as keystone species. Moreover, distinct salinity preferences in nitrogen transformation-related genes were observed. This study can improve the understanding to the regulation of biofilm systems to salt stresses.


Biofilms , Bioreactors , Salinity , Bioreactors/microbiology , Nitrogen , Bacteria/metabolism , Bacteria/genetics
20.
J Hazard Mater ; 471: 134333, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38643581

Microplastics (MPs) are emerging contaminants found globally. However, their effects on soil-plant systems in salt-affected habitats remain unknown. Here, we examined the effects of polyethylene (PE) and polylactic acid (PLA) on soil properties, maize performance, and bacterial communities in soils with different salinity levels. Overall, MPs decreased soil electrical conductivity and increased NH4+-N and NO3--N contents. Adding NaCl alone had promoting and inhibitive effects on plant growth in a concentration-dependent manner. Overall, the addition of 0.2% PLA increased shoot biomass, while 2% PLA decreased it. Salinity increased Na content and decreased K/Na ratio in plant tissues (particularly roots), which were further modified by MPs. NaCl and MPs singly and jointly regulated the expression of functional genes related to salt tolerance in leaves, including ZMSOS1, ZMHKT1, and ZMHAK1. Exposure to NaCl alone had a slight effect on soil bacterial α-diversity, but in most cases, MPs increased ACE, Chao1, and Shannon indexes. Both MPs and NaCl altered bacterial community composition, although the specific effects varied depending on the type and concentration of MPs and the salinity level. Overall, PLA had more pronounced effects on soil-plant systems compared to PE. These findings bridge knowledge gaps in the risks of MPs in salt-affected habitats.


Bacteria , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Zea mays , Soil Pollutants/toxicity , Soil/chemistry , Microplastics/toxicity , Zea mays/drug effects , Zea mays/growth & development , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Bacteria/classification , Sodium Chloride/toxicity , Polyesters , Salinity , Polyethylene , Microbiota/drug effects
...